

Welcome to giveme’s documentation!

Giveme is a dependency injection framework for python.
It gives you the tools to separate external services, such as database wrappers and web frameworks from
your business logic.

Quickstart

The Injector class is at the heart of giveme.
It acts as a dependency registry and injects dependencies into function
arguments.

You register a dependency factory using its register() decorator
and inject a dependency into a another function or method using
the inject() decorator.

from giveme import Injector

injector = Injector()

@injector.register
def magic_number():
 return 42

@injector.inject
def double_number(magic_number):
 return magic_number*2

double_number()

84

Dependency cache (singleton and thread local dependencies)

By default, the injector calls the dependency factory every time its used.
So in the example above, magic_number() is called every time you call
double_number without arguments

In the real world, your dependencies are generally more complex objects that may involve
network calls that are expensive to initalize or carry some kind of state that you want to persist
between uses.

Using register() with the singleton argument achieves this
by only calling the dependency factory the first time it’s used, after that its return value
is cached for subsequent uses. E.g.

@injector.register(singleton=True)
def number_list():
 return [1, 2, 3]

@injector.inject
def increment_list(number_list):
 for i in range(len(number_list)):
 number_list[i] += 1
 return number_list

print(increment_list())
print(increment_list())

[2, 3, 4]
[3, 4, 5]

Every call to increment_list() operates on the same instance of number_list()

threadlocal can also be used for the same effect, that makes the dependency cache
use Threading.local storage behind the scenes so that each instance of a dependency is
only available to the thread that created it.

Naming dependencies

By default register() uses the name of the
decorated function as the dependency name.

This can be overriden using the name keyword argument:

@injector.register(name='cache_wrapper')
def redis_cache():
 ...

When injecting inject() matches dependency names
to the decorated function’s arguments.
This can also be overriden by passing any number of keyword arguments in the
format of argument_name='dependency_name'

Example:

@injector.inject(cache='cache_wrapper')
def do_cache_stuff(cache):
 # cache receives the 'cache_wrapper' dependency
 ...

Nested dependencies

A dependency may have its own dependencies. For instance you might have two database wrappers that share a
database connection (pool).
Luckily you can inject dependencies into other dependencies same as anything else, e.g.:

import redis

@injector.register(singleton=True)
def redis_client():
 return redis.Redis.from_url('my_redis_url')

@injector.register(singleton=True)
@injector.inject
def cache(redis_client):
 return MyRedisCache(redis_client)

@injector.register(singleton=True)
@injector.inject
def session_store(redis_client):
 return MyRedisSessionStore(redis_client)

You can now inject cache or session_store into other functions and both will use the same Redis instance
behind the scenes.

Argument binding

inject() handles any combination of injected and manually passed
arguments and it only injects for arguments that are not explicitly passed in.
Ordering does not matter beyond python’s regular argument order rules.

E.g. This works as expected:

@injector.register
def something():
 return 'This is a dependency'

@injector.inject
def do_something(a, *args, something, b=100, c=200, **kwargs):
 return a, args, something, b, c, kwargs

do_something(1, 2, 3, 4, 5, b=200, c=300, x=55)

And to override the dependency

do_something(1, 2, 3, 4, 5, something='overriden dependency', b=200, c=300, x=55)

Bypass injection

Dependency injection can always be bypassed by manually passing in replacement values for their
respective arguments.

For instance in our increment_list function above:

print(increment_list())
print(increment_list([0, 0, 0])

[2, 3, 4]
[1, 1, 1]

API reference

giveme.injector

	
exception giveme.injector.AsyncDependencyForbiddenError

	Bases: Exception

	
class giveme.injector.Dependency(name, factory, singleton=False, threadlocal=False)

	Bases: object

	
__init__(name, factory, singleton=False, threadlocal=False)

	Initialize self. See help(type(self)) for accurate signature.

	
factory

	

	
name

	

	
singleton

	

	
threadlocal

	

	
exception giveme.injector.DependencyNotFoundError

	Bases: Exception

	
exception giveme.injector.DependencyNotFoundWarning

	Bases: RuntimeWarning

	
class giveme.injector.Injector

	Bases: object

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

	
cache(dependency: giveme.injector.Dependency, value)

	Store an instance of dependency in the cache.
Does nothing if dependency is NOT a threadlocal
or a singleton.

	Parameters

	
	dependency (Dependency) – The Dependency to cache

	value – The value to cache for dependency

	
cached(dependency)

	Get a cached instance of dependency.

	Parameters

	dependency (Dependency) – The Dependency to retrievie value for

	Returns

	The cached value

	
clear()

	Clear (unregister) all dependencies. Useful in tests, where you need
clean setup on every test.

	
delete(name)

	Delete (unregister) a dependency by name.

	
get(name: str)

	Get an instance of dependency,
this can be either a cached instance
or a new one (in which case the factory is called)

	
inject(function=None, **names)

	Inject dependencies into funtion’s arguments when called.

>>> @injector.inject
... def use_dependency(dependency_name):
 ...
>>> use_dependency()

The Injector will look for registered dependencies
matching named arguments and automatically pass
them to the given function when it’s called.

	Parameters

	
	function (callable) – The function to inject into

	**names – in the form of argument='name' to override
the default behavior which matches dependency names with argument
names.

	
register(function=None, *, singleton=False, threadlocal=False, name=None)

	Add an object to the injector’s registry.

Can be used as a decorator like so:

>>> @injector.register
... def my_dependency(): ...

or a plain function call by passing in a callable
injector.register(my_dependency)

	Parameters

	
	function (callable) – The function or callable to add to the registry

	name (string) – Set the name of the dependency. Defaults to the name of function

	singleton (bool) – When True, register dependency as a singleton, this
means that function is called on first use and its
return value cached for subsequent uses. Defaults to False

	threadlocal (bool) – When True, register dependency as a threadlocal singleton,
Same functionality as singleton except Threading.local is used
to cache return values.

	
resolve(dependency)

	Resolve dependency as instance attribute
of given class.

>>> class Users:
... db = injector.resolve(user_db)
...
... def get_by_id(self, user_id):
... return self.db.get(user_id)

When the attribute is first accessed, it
will be resolved from the corresponding
dependency function

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 giveme	

 	
 	
 giveme.core	

 	
 	
 giveme.injector	

Index

 _
 | A
 | C
 | D
 | F
 | G
 | I
 | M
 | N
 | R
 | S
 | T

_

 	
 	__init__() (giveme.injector.Dependency method)

 	(giveme.injector.Injector method)

A

 	
 	AsyncDependencyForbiddenError

C

 	
 	cache() (giveme.injector.Injector method)

 	cached() (giveme.injector.Injector method)

 	
 	clear() (giveme.core.Manager method)

 	(giveme.injector.Injector method)

D

 	
 	delete() (giveme.injector.Injector method)

 	Dependency (class in giveme.injector)

 	
 	DependencyNotFoundError

 	DependencyNotFoundWarning

F

 	
 	factory (giveme.injector.Dependency attribute)

G

 	
 	get() (giveme.core.Manager method)

 	(giveme.injector.Injector method)

 	get_value() (giveme.core.Manager method)

 	
 	giveme (module)

 	giveme.core (module)

 	giveme.injector (module)

I

 	
 	inject() (giveme.injector.Injector method)

 	(in module giveme.core)

 	
 	Injector (class in giveme.injector)

M

 	
 	Manager (class in giveme.core)

N

 	
 	name (giveme.injector.Dependency attribute)

R

 	
 	register() (giveme.core.Manager method)

 	(giveme.injector.Injector method)

 	(in module giveme.core)

 	
 	remove() (giveme.core.Manager method)

 	resolve() (giveme.injector.Injector method)

S

 	
 	singleton (giveme.injector.Dependency attribute)

T

 	
 	threadlocal (giveme.injector.Dependency attribute)

giveme package

Submodules

giveme.core module

	deprecated

	1.0.0

	
class giveme.core.Manager

	Bases: object

	Deprecated

	1.0.0

	
clear()

	

	
get(name)

	Get a dependency factory by name, None if not registered

	
get_value(name)

	Get return value of a dependency factory or
a live singleton instance.

	
register(func, singleton=False, threadlocal=False, name=None)

	Register a dependency function

	
remove(name)

	Remove a dependency by name

	
giveme.core.inject(function=None, **overridden_names)

	
	Deprecated

	1.0.0

Use giveme.injector.Injector instead.

Inject dependencies into given function’s arguments.
By default the injector looks for keyword arguments
matching registered dependency names.

Example:

@register
def db_connection():

return create_db_connection()

@inject
def save_thing(thing, db_connection=None):

db_connection.store(thing)

Arbitrary arguments may also be mapped to
specific dependency names by passing them to the
decorator as arg='dependency_name'

	Example:

	@inject(db=’db_connection’)
def save_thing(thing, db=None): # db_connection injected as db

	Args:

	
	function (callable): The function that accepts a dependency.

	Implicitly passed when used as a decorator.

	**overridden_names: Mappings of function arguments to

	dependency names in the form of function_argument='dependency name'

	
giveme.core.register(function=None, *, singleton=False, threadlocal=False, name=None)

	
	Deprecated

	1.0.0

Use giveme.injector.Injector instead.

Register a dependency factory in the dependency manager. The function name is the
name of the dependency.
This can be used as a decorator.

	Args:

	
	function (callable): The dependency factory function

	Not needed when used as decorator.

	singleton (bool, optional): If True the given function is only called once

	during the application lifetime. Injectees will receive the already created
instance when available. Defaults to False

	threadlocal (bool, optional): Same as singleton except the returned instance

	is available only to the thread that created it. Defaults to False

	name (str, optional): Overridden name for the dependency.

	Defaults to the name of the registered function.

giveme.injector module

	
exception giveme.injector.AsyncDependencyForbiddenError

	Bases: Exception

	
class giveme.injector.Dependency(name, factory, singleton=False, threadlocal=False)

	Bases: object

	
factory

	

	
name

	

	
singleton

	

	
threadlocal

	

	
exception giveme.injector.DependencyNotFoundError

	Bases: Exception

	
exception giveme.injector.DependencyNotFoundWarning

	Bases: RuntimeWarning

	
class giveme.injector.Injector

	Bases: object

	
cache(dependency: giveme.injector.Dependency, value)

	Store an instance of dependency in the cache.
Does nothing if dependency is NOT a threadlocal
or a singleton.

	Parameters

	
	dependency (Dependency) – The Dependency to cache

	value – The value to cache for dependency

	
cached(dependency)

	Get a cached instance of dependency.

	Parameters

	dependency (Dependency) – The Dependency to retrievie value for

	Returns

	The cached value

	
clear()

	Clear (unregister) all dependencies. Useful in tests, where you need
clean setup on every test.

	
delete(name)

	Delete (unregister) a dependency by name.

	
get(name: str)

	Get an instance of dependency,
this can be either a cached instance
or a new one (in which case the factory is called)

	
inject(function=None, **names)

	Inject dependencies into funtion’s arguments when called.

>>> @injector.inject
... def use_dependency(dependency_name):
 ...
>>> use_dependency()

The Injector will look for registered dependencies
matching named arguments and automatically pass
them to the given function when it’s called.

	Parameters

	
	function (callable) – The function to inject into

	**names – in the form of argument='name' to override
the default behavior which matches dependency names with argument
names.

	
register(function=None, *, singleton=False, threadlocal=False, name=None)

	Add an object to the injector’s registry.

Can be used as a decorator like so:

>>> @injector.register
... def my_dependency(): ...

or a plain function call by passing in a callable
injector.register(my_dependency)

	Parameters

	
	function (callable) – The function or callable to add to the registry

	name (string) – Set the name of the dependency. Defaults to the name of function

	singleton (bool) – When True, register dependency as a singleton, this
means that function is called on first use and its
return value cached for subsequent uses. Defaults to False

	threadlocal (bool) – When True, register dependency as a threadlocal singleton,
Same functionality as singleton except Threading.local is used
to cache return values.

	
resolve(dependency)

	Resolve dependency as instance attribute
of given class.

>>> class Users:
... db = injector.resolve(user_db)
...
... def get_by_id(self, user_id):
... return self.db.get(user_id)

When the attribute is first accessed, it
will be resolved from the corresponding
dependency function

Module contents

giveme

	giveme package
	Submodules

	giveme.core module

	giveme.injector module

	Module contents

tests module

 nav.xhtml

 Table of Contents

 		
 Welcome to giveme’s documentation!

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

