
giveme Documentation
Release 1.0.0

Steinthor Palsson

Nov 27, 2017

Contents:

1 Quickstart 3

2 Dependency cache (singleton and thread local dependencies) 5

3 Naming dependencies 7

4 Nested dependencies 9

5 Argument binding 11

6 Bypass injection 13

7 API reference 15

8 giveme.injector 17

9 Indices and tables 19

Python Module Index 21

i

ii

giveme Documentation, Release 1.0.0

Giveme is a dependency injection framework for python. It gives you the tools to separate external services, such as
database wrappers and web frameworks from your business logic.

Contents: 1

giveme Documentation, Release 1.0.0

2 Contents:

CHAPTER 1

Quickstart

The Injector class is at the heart of giveme. It acts as a dependency registry and injects dependencies into function
arguments.

You register a dependency factory using its register() decorator and inject a dependency into a another function
or method using the inject() decorator.

from giveme import Injector

injector = Injector()

@injector.register
def magic_number():

return 42

@injector.inject
def double_number(magic_number):

return magic_number*2

double_number()

84

3

giveme Documentation, Release 1.0.0

4 Chapter 1. Quickstart

CHAPTER 2

Dependency cache (singleton and thread local dependencies)

By default, the injector calls the dependency factory every time its used. So in the example above, magic_number()
is called every time you call double_number without arguments

In the real world, your dependencies are generally more complex objects that may involve network calls that are
expensive to initalize or carry some kind of state that you want to persist between uses.

Using register() with the singleton argument achieves this by only calling the dependency factory the first
time it’s used, after that its return value is cached for subsequent uses. E.g.

@injector.register(singleton=True)
def number_list():

return [1, 2, 3]

@injector.inject
def increment_list(number_list):

for i in range(len(number_list)):
number_list[i] += 1

return number_list

print(increment_list())
print(increment_list())

[2, 3, 4]
[3, 4, 5]

Every call to increment_list() operates on the same instance of number_list()

threadlocal can also be used for the same effect, that makes the dependency cache use Threading.local
storage behind the scenes so that each instance of a dependency is only available to the thread that created it.

5

giveme Documentation, Release 1.0.0

6 Chapter 2. Dependency cache (singleton and thread local dependencies)

CHAPTER 3

Naming dependencies

By default register() uses the name of the decorated function as the dependency name.

This can be overriden using the name keyword argument:

@injector.register(name='cache_wrapper')
def redis_cache():

...

When injecting inject() matches dependency names to the decorated function’s arguments. This can also be over-
riden by passing any number of keyword arguments in the format of argument_name='dependency_name'

Example:

@injector.inject(cache='cache_wrapper')
def do_cache_stuff(cache):

cache receives the 'cache_wrapper' dependency
...

7

giveme Documentation, Release 1.0.0

8 Chapter 3. Naming dependencies

CHAPTER 4

Nested dependencies

A dependency may have its own dependencies. For instance you might have two database wrappers that share a
database connection (pool). Luckily you can inject dependencies into other dependencies same as anything else, e.g.:

import redis

@injector.register(singleton=True)
def redis_client():

return redis.Redis.from_url('my_redis_url')

@injector.register(singleton=True)
@injector.inject
def cache(redis_client):

return MyRedisCache(redis_client)

@injector.register(singleton=True)
@injector.inject
def session_store(redis_client):

return MyRedisSessionStore(redis_client)

You can now inject cache or session_store into other functions and both will use the same Redis instance
behind the scenes.

9

giveme Documentation, Release 1.0.0

10 Chapter 4. Nested dependencies

CHAPTER 5

Argument binding

inject() handles any combination of injected and manually passed arguments and it only injects for arguments that
are not explicitly passed in. Ordering does not matter beyond python’s regular argument order rules.

E.g. This works as expected:

@injector.register
def something():

return 'This is a dependency'

@injector.inject
def do_something(a, *args, something, b=100, c=200, **kwargs):

return a, args, something, b, c, kwargs

do_something(1, 2, 3, 4, 5, b=200, c=300, x=55)

And to override the dependency

do_something(1, 2, 3, 4, 5, something='overriden dependency', b=200, c=300, x=55)

11

giveme Documentation, Release 1.0.0

12 Chapter 5. Argument binding

CHAPTER 6

Bypass injection

Dependency injection can always be bypassed by manually passing in replacement values for their respective argu-
ments.

For instance in our increment_list function above:

print(increment_list())
print(increment_list([0, 0, 0])

[2, 3, 4]
[1, 1, 1]

13

giveme Documentation, Release 1.0.0

14 Chapter 6. Bypass injection

CHAPTER 7

API reference

15

giveme Documentation, Release 1.0.0

16 Chapter 7. API reference

CHAPTER 8

giveme.injector

class giveme.injector.Dependency(name, factory, singleton=False, threadlocal=False)
Bases: object

__init__(name, factory, singleton=False, threadlocal=False)

factory

name

singleton

threadlocal

exception giveme.injector.DependencyNotFoundError
Bases: Exception

exception giveme.injector.DependencyNotFoundWarning
Bases: RuntimeWarning

class giveme.injector.Injector
Bases: object

__init__()

cache(dependency: giveme.injector.Dependency, value)
Store an instance of dependency in the cache. Does nothing if dependency is NOT a threadlocal or a
singleton.

Parameters

• dependency (Dependency) – The Dependency to cache

• value – The value to cache for dependency

cached(dependency)
Get a cached instance of dependency.

Parameters dependency (Dependency) – The Dependency to retrievie value for

Returns The cached value

17

giveme Documentation, Release 1.0.0

delete(name)
Delete (unregister) a dependency by name.

get(name: str)
Get an instance of dependency, this can be either a cached instance or a new one (in which case the factory
is called)

inject(function=None, **names)
Inject dependencies into funtion‘s arguments when called.

>>> @injector.inject
... def use_dependency(dependency_name):

...
>>> use_dependency()

The Injector will look for registered dependencies matching named arguments and automatically pass them
to the given function when it’s called.

Parameters

• function (callable) – The function to inject into

• **names – in the form of argument='name' to override the default behavior which
matches dependency names with argument names.

register(function=None, *, singleton=False, threadlocal=False, name=None)
Add an object to the injector’s registry.

Can be used as a decorator like so:

>>> @injector.register
... def my_dependency(): ...

or a plain function call by passing in a callable injector.register(my_dependency)

Parameters

• function (callable) – The function or callable to add to the registry

• name (string) – Set the name of the dependency. Defaults to the name of function

• singleton (bool) – When True, register dependency as a singleton, this means that
function is called on first use and its return value cached for subsequent uses. Defaults to
False

• threadlocal (bool) – When True, register dependency as a threadlocal singleton,
Same functionality as singleton except Threading.local is used to cache return
values.

18 Chapter 8. giveme.injector

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

19

giveme Documentation, Release 1.0.0

20 Chapter 9. Indices and tables

Python Module Index

g
giveme.injector, 17

21

giveme Documentation, Release 1.0.0

22 Python Module Index

Index

Symbols
__init__() (giveme.injector.Dependency method), 17
__init__() (giveme.injector.Injector method), 17

C
cache() (giveme.injector.Injector method), 17
cached() (giveme.injector.Injector method), 17

D
delete() (giveme.injector.Injector method), 17
Dependency (class in giveme.injector), 17
DependencyNotFoundError, 17
DependencyNotFoundWarning, 17

F
factory (giveme.injector.Dependency attribute), 17

G
get() (giveme.injector.Injector method), 18
giveme.injector (module), 17

I
inject() (giveme.injector.Injector method), 18
Injector (class in giveme.injector), 17

N
name (giveme.injector.Dependency attribute), 17

R
register() (giveme.injector.Injector method), 18

S
singleton (giveme.injector.Dependency attribute), 17

T
threadlocal (giveme.injector.Dependency attribute), 17

23

	Quickstart
	Dependency cache (singleton and thread local dependencies)
	Naming dependencies
	Nested dependencies
	Argument binding
	Bypass injection
	API reference
	giveme.injector
	Indices and tables
	Python Module Index

